186 research outputs found

    Percutaneous screw fixation for trapezium fracture

    Get PDF
    Isolated trapezial fracture is a rare diagnosis which can lead to long term symptoms if missed. We report a case of vertical intra-articular displaced trapezial fracture treated with percutaneous cancellous screw fixation with good functional outcome

    Protein materials as sustainable non- and minimally invasive strategies for biomedical applications

    Get PDF
    Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- and minimally invasive strategies mainly for topical application

    Thioflavin T triggers \u3b2 amyloid peptide (1-40) fibrils formation.

    Get PDF
    Introduction A general characteristic of aggregation is the multiple interaction and cross-feedback among distinct mechanisms occurring at different hierarchical levels. The comprehension of the different species interconversion during aggregation is very important since emerging evidences indicate intermediate oligomeric aggregates as primary toxic species. In this context, A\u3b2 amyloid peptide provides a challenging model for studying aggregation phenomena both for the complexity of its association process and for the direct implications in Alzheimer\u2019s Disease. Aggregates growth conditions strongly affect the final morphology, the fibrillar molecular structure as well as the aggregation pathway which is characterized by the occurrence of multiple transient species. Methods The fluorescent dye Thioflavin T (ThT) is widely used to detect amyloid deposits and it is often used in situ to study aggregation kinetics, under the hypothesis that its presence does not affect the aggregation processes under study. Here we present an experimental study on A\u3b2(1-40) peptide fibrillation kinetics at pH 7.4. In the observed conditions, A\u3b2(1- 40) undergoes aggregation only if Thioflavin T is present in solution. This phenomenon was analyzed as a function of temperature, ThT and peptide concentrations in order to explore the underlying fibrillation mechanism. Light scattering, ThT fluorescence emission, two photon excitation fluorescence microscopy, were used in a kinetic fashion to highlight different sides and critical phases of the aggregation pathway. Circular Dichroism and FTIR measurements are used to characterize secondary structure of the aggregates. Results The selected approach gives detailed information on the time evolution of A\u3b2(1-40) fibrillation process highlighting structural changes at molecular level, different aggregate species growth and their morphologies. Our data show that A\u3b2(1-40) fibrillation process occurs only in the presence of ThT and that the observed aggregation involves at least three different aggregation mechanisms acting in competition. In the first step, small oligomers, which bind ThT, are formed via non nucleated polymerization mechanism and represent an activated state for following fibrils growth. This process appear to be a rate limiting step for two distinct fibril nucleation mechanisms probably affected by an high degree of spatial heterogeneity. Conclusions We demonstrated that in the selected experimental conditions ThT triggers the A\u3b2(1 1240) fibrillation process (D\u2019Amico et. al 2012). Sterical and chemical properties of ThT molecule may modulate the peptide conformation, with similar mechanisms to the ones that usually drive the binding of this dye to already formed amyloids. So, the presence of ThT in solution may change the thermodynamic equilibrium trapping specificmore ordered conformations prone to supramolecular assembly

    Quantum erasure within the Optical Stern-Gerlach Model

    Full text link
    In the optical Stern-Gerlach effect the two branches in which the incoming atomic packet splits up can display interference pattern outside the cavity when a field measurement is made which erases the which-way information on the quantum paths the system can follow. On the contrary, the mere possibility to acquire this information causes a decoherence effect which cancels out the interference pattern. A phase space analysis is also carried out to investigate on the negativity of the Wigner function and on the connection between its covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure

    Identification of microplastics using 4-dimethylamino-4′-nitrostilbene solvatochromic fluorescence

    Get PDF
    In this work, we introduce the use of 4-dimethylamino-4′-nitrostilbene (DANS) fluorescent dye for applications in the detection and analysis of microplastics, an impendent source of pollution made of synthetic organic polymers with a size varying from less than 5 mm to nanometer scale. The use of this dye revealed itself as a versatile, fast and sensitive tool for readily discriminate microplastics in water environment. The experimental evidences herein presented demonstrate that DANS efficiently absorbs into a variety of polymers constituting microplastics, and its solvatochromic properties lead to a positive shift of the fluorescence emission spectrum according to the polarity of the polymers. Therefore, under UV illumination, microplastics glow a specific emission spectrum from blue to red that allows for a straightforward polymer identification. In addition, we show that DANS staining gives access to different detection and analysis strategies based on fluorescence microscopy, from simple epifluorescence fragments visualization, to confocal microscopy and phasor approach for plastic components quantification

    Implementation of sample pooling procedure using a rapid sars-cov-2 diagnostic real-time pcr test performed prior to hospital admission of people with intellectual disabilities

    Get PDF
    Reliability, accuracy, and timeliness of diagnostic testing for SARS-CoV-2 infection have allowed adequate public health management of the disease, thus notably helping the timely mapping of viral spread within the community. Furthermore, the most vulnerable populations, such as people with intellectual disability and dementia, represent a high-risk group across multiple dimensions, including a higher prevalence of pre-existing conditions, lower health maintenance, and a propensity for rapid community spread. This led to an urgent need for reliable in-house rapid testing to be performed prior to hospital admission. In the present study, we describe a pooling procedure in which oropharyngeal and nasopharyngeal swabs for SARS-CoV-2 detection (performed prior to hospital admission using rapid RT-PCR assay) are pooled together at the time of sample collection. Sample pooling (groups of 2–4 samples per tube) allowed us to significantly reduce response times, consumables, and personnel costs while maintaining the same test sensitivity

    Spatial Orientation And Distribution Of Reservoir Fractures From Scattered Seismic Energy

    Get PDF
    Shortened title: Fracture characterization from coda wavesWe present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fractures impart a ringing coda type signature to any seismic energy which is transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: 1) the difference in angle between the orientation of the fractures and the acquisition direction, 2) the fracture spacing, 3) the wavelength of the illuminating seismic energy, and 4) the compliance, or stiffness, of the fractures. This coda energy is the most coherent when the acquisition direction is parallel to the strike of the fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. Our method uses surface seismic reflection traces to derive a transfer function which quantifies the change in an apparent source wavelet before and after propagating through a fractured interval. The transfer function for an interval with no or low amounts of scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. When a 3D survey is acquired with a full range of azimuths, the variation in the derived transfer functions allows us to identify subsurface areas with high fracturing and determine the strike of those fractures. We calibrated the method with model data and then applied it to the Emilio field with a fractured reservoir giving results which agree with known field measurements and previously published fracture orientations derived from PS anisotropy.Eni S.p.A. (Firm)United States. Dept. of Energy (Grant number DE-FC26-02NT15346)Massachusetts Institute of Technology. Earth Resources Laborator

    Social Cognition in Neurodevelopmental Disorders and Epilepsy

    Get PDF
    Introduction: The purpose of our study was to perform a comparative analysis of social cognition in children and adolescents with epilepsy, autism spectrum disorder (ASD), specific learning disorder (SLD) and in typical development (TD) controls. The secondary aim was to relate social cognition to some clinical and demographic characteristics. Methods: Our work is a transversal observational study. The recruits were 179 children and adolescents aged between 6 and 18 years diagnosed with epilepsy, ASD, or SLD and 32 subjects with TD. All the participants underwent neuropsychological assessment of Emotion Recognition (ER) and Theory of Mind (ToM) skills. Results: All three clinical groups performed significantly worse than controls in ER and ToM. The ASD group achieved significantly lower performance than the other groups; however, the scores of SLD and epilepsy groups were comparable. The ER performances are related to non-verbal intelligence only in the group with epilepsy. Conclusion: Children and adolescents with focal epilepsy, SLD, or ASD may present a deficit of varying extent in emotion recognition and ToM, compared with TD peers. These difficulties are more pronounced in individuals with ASD, but impairment worthy of clinical attention also emerges in individuals with SLD and epilepsy

    Software for full-color 3D reconstruction of the biological tissues internal structure

    Full text link
    A software for processing sets of full-color images of biological tissue histological sections is developed. We used histological sections obtained by the method of high-precision layer-by-layer grinding of frozen biological tissues. The software allows restoring the image of the tissue for an arbitrary cross-section of the tissue sample. Thus, our method is designed to create a full-color 3D reconstruction of the biological tissue structure. The resolution of 3D reconstruction is determined by the quality of the initial histological sections. The newly developed technology available to us provides a resolution of up to 5 - 10 {\mu}m in three dimensions.Comment: 11 pages, 8 figure
    • …
    corecore